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ABSTRACT

We present an elementary proof of the classification theorem for finite
nonmodular quaternion-free 2-groups. This proof does not involve the
structure theory of powerful 2-groups. Such a new proof is also necessary,
since there are several gaps in the original proof given in [5].

1. Introduction and preliminary results

Finite modular Qg-free 2-groups are classified in [2]. Here we classify finite non-
modular Qs-free 2-groups. The original proof of the corresponding classification
theorem given in [5] depends on the structure theory of powerful 2-groups. Un-
fortunately, there seem to be some gaps in the proof of Lemmas 10 and 13 in
[5]. However, it is a merit of B. Wilkens to discover a possibility for the exis-
tence of such a strong theorem. Our new proof of the classification theorem is
completely elementary and does not involve powerful 2-groups. Nevertheless,
the proof is very involved.

We first prove some easy preliminary results. Then we state the Main The-
orem 1.7 and afterwards we describe in great detail the groups appearing in
the Main Theorem. Propositions 1.8 to 1.11 describing these groups are also of
independent interest, since they are needed by applying the Main Theorem in
future investigations. After that a proof of the Main Theorem follows.
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LEMMA 1.1: In a Qg-free 2-group X there are no elements z,y with o(z) =
2% > 2 and o(y) = 4 so that x¥ = z~'. If D < X and D = Dy, then Cx (D) is
elementary abelian.

Proof: If 32 = 22, then (z,y) & Quu. If (z) N (y) = {1}, then
(x,9)/(z?" " y?) = Qyr41. Suppose D < X, where

D={(atle*=t*=1,at =a™?).

If v is an element of order 4 in Cx (D), then o(tv) = 4 and tv inverts a, a
contradiction. Hence Cx (D) must be elementary abelian. [ |

LEMMA 1.2: Let X be a Qg-free 2-group with elements a and b of order 4
such that [a,b?] = [a?,b] = 1. If [a,b] # 1, then (a,b) is minimal nonabelian
2b2

nonmetacyclic of order 2* and therefore [a,b] = a®b* and ab is an involution.

Proof: We have (a?,b%) < Z({a,b)). Set [a,b] = c and assume that ¢ # 1. We
compute

1=[a%b] = [a,b]°[a,b] =’ and 1=[a,b’] = [a,b][a,b]’ = cc’.

By Lemma 1.1, ¢ must be an involution and, by the above, [c,a] = [¢,b] =
1. Hence (c) is normal in (a,b) and (a,b)/(c) is abelian. Hence (a,b)’ = (c)
and so (a,b) (being two-generated and with the commutator group of order 2)
is minimal nonabelian (and so of class 2) and therefore exp({(a,b)) = 4. By
assumption, {a,b) % Qg and (a,b) 2 Dg since Dg does not possess two non-
commuting elements a and b of order 4. We have proved that |{a, b)| > 2.

On the other hand, ¢ = [a,b], %, and b? are central involutions in (a,b). Set
V = {aZ%¢,b?c) so that V < Z({a,b)). We consider (a,b)/V and compute

a® = afa,b] = ac = a Y(a%c), b* = b[b,a] = bc = b~ (b?c).

Since {(a,b)/V is Qg-free, Lemma 1.1 implies that at least one of a? or b? is
contained in V. Hence a? = bc or b? = a’c and so in any case c = a%b?. We
see that

(ab)? = a%b?[b,a] = a®b%c = 1.

Hence (a,b) = (a,ab), where o(a) = 4 and o(ab) = 2. Since |{a,b)| > 2%, we
must have |(a,b)| = 2* and so (a,b) is minimal nonabelian nonmetacyclic of
order 2. ]
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LEMMA 1.3 (see [4, Proposition 2.4]): Let G be a minimal nonmodular 2-group
which is Qg-free. Then either G = Dg or G has a normal elementary abelian
subgroup E = Q,(G) = (n, 2,t) of order 8 with G/E cyclic. There is an element
z € G — E of order 2°%1,s > 1, such that G = (E,z), EN (z) = (n), and

t*=tz, 2Z"=2znf €=0,1,

where in case € = 1 we must have s > 1, and we have in that case G' = (n, z) &
E, and Z(G) = {(z*). Ife = 0, then G is a minimal nonabelian nonmetacyclic
group. In any case, (z?) is normal in G, G/{(z?) = Dg, and ®(G) = {z2,2) is
abelian of type (2¢,2).

LEMMA 1.4: Let V be a minimal non-quaternion-free 2-group. Then there is a
normal subgroup U of V such that V/U = Qg and U < (V') so that d(V) = 2.
We have ®(V)/U = Z(V/U) so that foreachz € V —®(V),z2 € (V) ~U. In
particular, there are no involutions in V. — ®(V').

Proof: 'Trivial. |
We use very often the following result of A. Mann.

LEMMA 1.5 ([1, Lemma 64.1(u)]): If A and B are two distinct maximal sub-
groups of a p-group G, then |G’ : (A’B’)| < p.

For completeness we also state Iwasawa’s result in a suitable form.

ProPOSITION 1.6 ([2]): A 2-group G is modular if and only if G is Dg-free. A
2-group G is modular and Qg-free if and only if G possesses a normal abelian
subgroup A with cyclic G/A and there is an element g € G and an integer s > 2
such that G = (A, g) and a9 = a'*?" for all a € A (and so if exp(G) < 4, then
G is abelian).

THEOREM 1.7 (Main Theorem) (B. Wilkens): A finite 2-group G is non-
modular and quaternion-free if and only if G is one of the following groups:

(a) G is a semidirect product (z) - N, where N is a maximal abelian normal
subgroup of G with exp(N) > 2 and, if t is the involution in {x), then
every element in N is inverted by t.

(Wilkens group of type (a) with respect to N)

(b) G = N{(z), where N is a maximal elementary abelian normal subgroup of
G and (z) is not normal in G.

(Wilkens group of type (b) with respect to N)
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(¢) G = (N,z,t), where N is an elementary abelian normal subgroup of G
and t is an involution with [N,t] = 1. If o(xN) = 2%, then G/N &~ Mox41,
k >3, and 72 # 1; furthermore, [:I:zk_l,N] =1 and {t, zzk—l) & Dyg.
(Wilkens group of type (c) with respect to N, z,t)

We analyze now in great detail the above Wilkens groups of types (a), (b),
and (c).

PROPOSITION 1.8: Let G be a Wilkens group of type (a) with respect to N.
Then 04 (G) = N(t), where t is an involution in G — N (acting invertingly on
N) and N is a characteristic subgroup of Q;(G). The factor group G/01(G) is
cyclic (since G/N is cyclic). If G is a Wilkens group of type (a) with respect to
Ny, then N = Nj. Also, G is not Dg-free but G is Qg-free. If z € O1(Z(G)),
then G/(z) is either abelian or a Wilkens group of type (a) or (b).

Proof: Since G/N is cyclic, we have Q1(G) < N(t). All elements in Nt are
involutions and (Nt)=N(t), and so 2;(G) = N{t).

Suppose that N is not a characteristic subgroup of €;(G). Then there is
an automorphism « of Q;(G) such that N® # N so that O;(G) = NN® and
I (G) : (NNN®)| = 4. Let t’ be an involution in N* — N so that ¢’ inverts and
centralizes each element in NNN®. But then NN N? is elementary abelian and
so also N® = (N N Nt} is elementary abelian, contrary to exp(N%) =
exp(N) > 2.

Suppose that G is also a Wilkens group of type (a) with respect to Ny which
is distinct from N. Let t; be an involution in G — N; which inverts N;. By
the above, Q1(G) = Ny (t1) = N{t). We have |Q:(G) : N1| =2 and so Q:(G) =
NN;. Let tg € N; — N so that the involution tg inverts and centralizes each
element in N N Ny. But then N N N is elementary abelian and exp(N;) = 2, a
contradiction.

Since t inverts N and exp(XN) > 2, G is not Dg-free. Suppose that G is not
Qs-free. Let V' be a minimal non-Qg-free subgroup of G so that V has a normal
subgroup U with V/U 2 Qg and ®(V) > U. Since V £ N and G/N is cyclic,
we see that V/(V N N) is nontrivial cyclic. Let t’ be an element in V — N such
that (¢')2 € N. Then Nt' is the involution in G/N and so all elements in Nt' are
involutions. In particular, all elements in the set S = (V N N)¢' are involutions.
By Lemma 1.4, S < ®(V) and so also {S) = (VN N){#) < ®(V). But then
V/®(V) is cyclic, a contradiction.

Let z be an involution in Z(G). We want to determine the structure of G/(z)
and we know that G is a semidirect product of (z) and N, and let ¢ be the
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involution in (z). We have z € N and t inverts each element in N and so
t inverts each element in N/{z). If exp(N/(z))> 2, we see that G/(z) is a
Wilkens group of type (a).

Suppose that exp(N/{z))= 2. Set E = (#)N. Then E/{z) = W (G/{(z)) is a
maximal elementary abelian normal subgroup of G/{z). If {z,2) = (z} x (2) is
not normal in G, then G/(z) is a Wilkens group of type (b). Suppose that (z, z)
is normal in G. Then G’ < (z,2) N N = (z), which implies that G’ = (z). In

that case G/(z) is abelian and we are done. [ |

PROPOSITION 1.9: A 2-group G is a Wilkens group of type (b) with respect
to E if and only if G possesses a maximal normal elementary abelian subgroup
E such that G/E is cyclic and G is not Dg-free. Let G be a Wilkens group
of type (b) with respect to E. Then G is Qg-free. We have |[(1(G) : E| < 2
and G/Q4(G) is eyclic (since G/E is cyclic). If |Q4(G) : E| = 2, then G has
exactly two maximal normal elementary abelian subgroups E and E; and we
have Q1 (G) = EE\. In that case, if G is a Wilkens group of type (b) with respect
to Ey (also), then |2(G) : E1| =2 and 1(G) = Dg x Ej.. Let z € 01 (Z(G)).
Then G/(z) is either abelian or a Wilkens group of type (b) or G/(z) ® D x F,
where exp(F) < 2 and either D = Dg or D & May»,n > 4 (in which case G/(z)
is modular and nonabelian). Finally, if G is any 2-group with an elementary
abelian normal subgroup Ey such that G = (Ey,y) (and so G/Ey is cyclic) and
(y) is not normal in G, then G is a Wilkens group of type (b) (with respect to
any maximal elementary abelian normal subgroup E of G containing Ep).

Proof: Let G be a nonmodular 2-group possessing a maximal elementary
abelian normal subgroup F such that G/E is cyclic. We have G = (E, z) for
some z € G and, if (z) is not normal in G, then G is a Wilkens group of type (b).
Assume that (z) is normal in G. In that case, G’ < (z) N F and |[(z) N E| < 2.
Since G is nonmodular (and so nonabelian), G’ = (z) NE = (z2) & C3. We have
[z, E] = (2) and s0 |G : Cg(z)| = 2. We set E; = Cg(z) so that |E : | = 2.
Let t be an involution in £ — E; and let V be a complement of (z) in E; so that
G =V x(z,t). If |G/E| =2° > 2, then (x,t) & Mys+2,s > 2, and so for each
ac A= {(z)xV,a" =a'*?. But Proposition 1.6 implies that G is modular,
a contradiction. Hence |G/E| = 2 and (z,t) = Dg. In that case & = =t is an
involution in G — E, G = E{(%), {(f) is not normal in G, and so G is a Wilkens
group of type (b).

Conversely, let G be a Wilkens group of type (b) with respect to E so that
G = (E,g), where E is a maximal normal elementary abelian subgroup of G
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and (g) is not normal in G. Set Z = (g) N E so that |Z| < 2 and Z < Z(G). Set
S = N¢({g)) so that S # G and SN E < E. Since Ng(S) = (9)Ng(S), there is
an involution n € E — S normalizing S. We have

[vg) € SNE and 1#u=(ng]¢(g)
since n does not normalize (g). We have
[n,9] = ng”'ng = nnf = u.

On the other hand, ®(S) = (g?) and so (g?) is normal in (S, n) so that nd" =nz
with 2z € Z. Hence (g) normalizes {n,n9,Z) and acts nontrivially on the four-
group (n,n9,Z)/Z, where (g%) > Z. 1t follows that (n,g)/{g?) = Dg and so G
is not Dg-free.

From now on we denote by G a Wilkens group of type (b) with respect to E.
First of all, G is Qg-free. Indeed, if V is a minimal non-Qg-free subgroup of G,
then (by Lemma 1.4) there are no involutions in V —® (V) so that ®(V) > VNE.
But then V/®(V) is cyclic since V/V N E is cyclic, a contradiction.

Set W/E = Qy(G/E) so that [W : E| = 2 and (;(G) < W. It follows that
|:(G) : E| < 2. Suppose that |[2;(G) : E| = 2 so that Q;(G) = W and there
is an involution t € W — E. Since E is a maximal normal elementary abelian
subgroup of G, (t) is not normal in W and so W is a Wilkens group of type (b)
(with respect to E). Set E; = Cw(t) so that Ey — E is the set of all involutions
in W — E. Since (Ey — E) = E;, E) is normal in G and E and E; are the only
maximal normal elementary abelian subgroups of G. If G is a Wilkens group of
type (b) also with respect to Ej, then G/FE) must be cyclic and so |W : E;| =2
and in that case W = Q;(G) = Dg x E»s. Indeed, in that case take n € E — E;
so that (n,t) & Dg, ENEy = Z(W), and if V is a complement of ([n,t]) in
ENE;, then W =V x (n,t).

Let z be a central involution in G, where G = (E,z) and (z) is not normal
in G. Then z € E. If z € (z), then the fact that (z)/(z) is not normal in G/(z)
gives that G/(z) is a Wilkens group of type (b). Suppose that z ¢ (z). If (z, 2)
is not normal in G, then again G/(z) is a Wilkens group of type (b). Assume
that {z,z) = (z) x (z) is normal in G. If ()N E = {1}, then (z,2)NE = (z) and
G' < (z,2) NE = (z) and so G/(z) is abelian. Assume that (z) N E # {1} so
that (z,2)NE = Q,((z)) x (z) = E, and suppose that G/(z) = G is nonabelian.
Then G = (Z)E with (Z) N E = C and both (Z) and the elementary abelian
group E are normal in G so that G’ = (z) N E. Let  be an involution in E
which does not centralize (Z). If o(Z) = 4, then (Z,t) = Ds, and if o(Z) > 4,
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then (Z,%) & Man,n > 4. We have

E=(@)nE)x{f)xV,
where ((Z) N E) x V = Cg(Z) so that G = V x (z,%) and we are done. [

PROPOSITION 1.10: Let G be a Wilkens group of type (c) with respect to N, z, t.
Then G is Qg-free but is not Dg-free. We have Q,(G) = (z2°" )N = Dg x Ej»
and G = Q1(G)(z) so that G/Q,(G) is cyclic of order > 4. Also, N is the unique
maximal normal elementary abelian subgroup of G. No subgroup X of order
> 8 in (x) is normal in G. The involution z = 22" lies in G' N Z(G) and G/{z)
is a Wilkens group of type (b). If 2/ € Q,(Z(G)) and 2’ # 2z, then 2’ € N and
G/(2'} is a Wilkens group of type (c).

2}:—1

Proof: By definition, (xzk_l ,t) = Dg and so G is not Dg-free. Weseta =z
and z = a?. We have (G/N) = 01 (Z(G/N)) = ({a)N)/N and ©,(G/N) =
({t,a)N)/N = W/N, where W = (t,a)N and Z(W) = N. Each involution in G
must be contained in W and W = Q; (W) and so Q;(G) = W 2 Dg x E3s and
G = Q,(G)(z), so that G/Q;(G) is cyclic of order > 4. By the structure of G/N,
if X is a normal subgroup of G with N < X < W, then X € {N,W, (a)N},
where (a)N is abelian of type (4,2,...,2). This gives that N is a maximal
normal elementary abelian subgroup of G. Let N; be any maximal normal
elementary abelian subgroup of G. Then N; < W and assume that Ny # N.
Since Ny does not cover W/N (since all elements in ({a) N}~ N are of order 4), we
get |(NNy) : N| =2, NNy is normal in G and so (by the above) NN; = (a)N, a
contradiction. We have proved that N is the unique maximal normal elementary
abelian subgroup of G.

Let Y < (z) with |Y] > 8 and assume that ¢ normalizes Y. Since t inverts
(a) and (a) <Y, it follows that Y (¢) is of maximal class and order 2™, m > 4,
and so (Y(t))/(z) = Dym-1 is isomorphic to a proper subgroup of G/N. But
G/N 2 Msn,n > 4, is minimal nonabelian, a contradiction. We have proved
that Y is not normal in G.

Suppose that G is not Qs-free and let V' be a minimal non-Qg-free subgroup
of G. By Lemma 1.4, there are no involutions in V —®(V} and so ®(V) > VNN.
On the other hand, ®(V') is contained in the maximal subgroup (z)N of G, and
note that Q; ((x)N) = N (since N N (z) = (z) and a centralizes N). It follows
that Q;(®(V)) = VNN. Note that G/N has exactly three involutions: Na, Nt,
and N (at), where all elements in the coset Na are of order 4 and all elements in
cosets Nt and N(at) are involutions. Let (V N N)s (s € V) be an involution in
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V/(VNN). Then Ns is an involution in G/N. If all elements in the coset Ns are
involutions, then s € ®(V), contrary to the above fact that O, (®(V)) =V NN.
It follows that Ns = Na and so (V N N)s = {Na) NV is the unique involution
in V/(VNN). Since G/N is Qs-free, we get that V/(V N N) is cyclic. But then
V/®(V) is also cyclic, a contradiction.

We shall determine the structure of G/{z) = G. Since ,(G) = u(G)/(z)
is an elementary abelian normal subgroup of G, G = Q1(G)(z), and (Z) is not
normal in G (noting that z € (z) and (z) is not normal in G), G is a Wilkens
group of type (b). Let 2z’ be an involution in Z(G) and 2’ # 2. Then 2’ € N and
(2') N {a,t) = {1} so that G/(z') is not Dg-free. Obviously, G/(z') is a Wilkens
group of type (c). |

PropoSITION 1.11: Let G be one of the Wilkens groups. Suppose that there
is an involution z € Z(G) such that G/(z} is modular (i.e., Dg-free).
(1) If G/{z) is abelian, then G is a Wilkens group of type (b) and, more
precisely, G = D x E, where exp(F) < 2, and

D= (J},t|m2" =t2 =1,n> ]_,[:Ij,t] =2,Z2 — [x,z] = [t,z] = ]_>

(If n = 1, then D = Dg, and if n > 1, then D is minimal nonabelian
nonmetacyclic with (D) £ Z(D).)

(ii) If G/{z) is nonabelian, then there is another involution 2’ € Z(G) such
that {2} is a characteristic subgroup of G and G/{z'} is a Wilkens group
of type (b) (and so nonmodular).

Proof: (i) Suppose that G/(z) is abelian. Then G’ = (z) and, by Propositions
1.8, 1.9, and 1.10, G is a Wilkens group of type (a) or (b).

Suppose that G is of type (a). Then G = (z) - N (a semidirect product),
where N is a maximal normal abelian subgroup of G with exp(N) > 2, and if ¢
is the involution in {(z), then t inverts each element of N. Suppose n € N with
o(n)> 2. Then {n,t) is dihedral and so n? € (n,t)". It follows that n? € (z) and
therefore N/(z) is elementary abelian with U(V) = (2) and |N : Q;(N)| = 2.
Suppose (z) > (t) and let v € (z) with v2 = t. Let n € N with o(n)=4. We
have [n,v] # 1 and so [n,v] = z, which gives n¥ = nz. But then

nt=n? = (nz)? =n2¥ =nzz =n,

since z € Z(G). This is a contradiction and so (z) = (t). If n € N with
o(n)= 4, then D = (n,t) & Dg. Let E be a complement of (z) in OQ;(N),
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where ¢ centralizes 1 (N). We get G = (t) - N = D x E, where D = Dg and
exp(E) < 2.

Suppose that G is a Wilkens group of type (b). Then G = (N,z), where N
is a maximal normal elementary abelian subgroup of G and (z) is not normal
in G. We have z € N and G' = (z). If z € () N N, then (z) is normal in G, a
contradiction. Hence 2z ¢ (z) and (z,2) = (z) X (2) is normal in G. Since (z, 2)
contains exactly two cyclic subgroups (z) and (zz) of index 2 not containing (z},
we have |G : Ng({z))| = 2. There is t € N — Ng({z)) such that zt = z2. Also,
note that Ng((z)) centralizes (z) {since G’ = (z}). Let E be a complement of
(2, () N N) in Ny((z)). Then G = D x E, where

D=(z,t|lz” =t>=1,n>1,[z,t] = 2,22 = [z, 2] = [t, 2] = 1).

(it) Suppose that G/(z) is nonabelian. By Propositions 1.8, 1.9, and 1.10, G
is a Wilkens group of type (b). Then G = (N, z), where N is a maximal normal
elementary abelian subgroup of G and (z) is not normal in G. If z € () N N,
then the fact that (z) is not normal in G gives that (z)/(z) is not normal
in G/(z) and so G/(z) is a Wilkens group of type (b), a contradiction. Hence
z & (z). If (z, z) is not normal in G, then again G/(z) is a Wilkens group of type
(b), a contradiction. Hence (z,2) = (x) x (2) is normal in G. Assume first that
()N = {1}. Then (z,2) NN = (2) and G’ < (z,2) NN = (2) and so G/(z) is
abelian, a contradiction. Hence ()N > {1} and so (z,z) NN = Q;((z)) x (z).
Since G’ < (z,2) N N and G/(z) is nonabelian (by assumption), we get 1 #
IG'| < 4 and G' £ (z). We have Q1((z)) < Z(G). Set Q:1({z)) = (x0) and
S = Ng((z)) so that (xo,2) < Z(G), |G : S| =2 and |[N : SN N| = 2, because
(z) is not normal in G and the abelian normal subgroup (z, z) has exactly two
cyclic subgroups (z) and (zz) of index 2. Therefore, we have [r,s] = z or
[z,s] = zoz for an s € N — § and so

®(G) = (27, [{x), N]) = (=) x {2)-

Suppose o(z)> 8 so that ®(®(G)) = (z?) > (wo) and (xp) is a characteristic
subgroup of G. But (z)/(z¢) is not normal in G/(z) (since (x) is not normal in
G) and so G/{(z¢) is a Wilkens group of type (b) and we are done in this case.

Suppose o(z) = 4 so that * = . If (z) is not central in S, then there is an
involution ¢ in SN.N which inverts (z) and so {(z,t) = Dg. But then G/(2) is not
Dg-free, contrary to our assumption that G/(z) is modular. Hence {z) is central
in S and so G’ = ([z, s]) = (zoz) (since in case G’ = ([z, s]) = (z), G/(z) would
be abelian). But then (x, s) is the minimal nonabelian nonmetacyclic group of
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order 2% with (z,s) = (xg2) and (z,s)/(z) & Dg, contrary to our assumption
that G/(z) is modular. 1

LEMMA 1.12: Let G be a Wilkens group of type (b) with respect to N. Suppose
in addition that Q0 (G) = N. Then for each element g € G such that G = (N, g),
Nn{g) = {go) is of order 2 and G/{go) is also a Wilkens group of type (b) (and
so G/(go) is nonmodular).

Proof: Tt is enough to show that (g) is not normal in G (because then (g)/(go)
is also not normal in G/{go)). Suppose false. Then G’ < N N (g) = (go) and so
G’ = (go). We have |G : Cg(g)| = 2 and let ¢ be an involution in N — Cn(g). If
o(g) = 4, then (g,t) = Dg and so gt is an involution in G — N, a contradiction.
Hence o(g) > 4 and (g,t) & Ma~,n > 4. If V is a complement of (go) in
Cn{g), then G = V X {g,¢). But then G is modular (see Proposition 1.6}, a
contradiction. |

LEMMA 1.13 ([3, Proposition 1.10]): Let T be an involutory automorphism
acting on an abelian group B so that Cg(1) = W), is contained in Q,(B). Then
T acts invertingly on U;(B) and on B/Wj.

All the above results will be used freely in the proof of the Main Theorem.
The reader should be acquainted with the structure of minimal nonabelian p-
groups (see [1, Lemma 65.1]). Also, we use often the relation |G| = p|G'||Z(G)),
where G is a nonabelian p-group possessing an abelian maximal subgroup (see
(1, Lemma 1.1]).

2. Proof of the Main Theorem

Let G be a nonmodular quaternion-free 2-group of a smallest possible order
which is not isomorphic to any Wilkens group. Hence any proper nonmodular
subgroup and any proper nonmodular factor group is isomorphic to a Wilkens
group. We shall study such a minimal counter-example G and our purpose is
to show that such a group G does not exist.

(i) There is a central involution z of G such that G/(z) is nonmodular
(and so G/{z) is isomorphic to a Wilkens group).

Suppose false. Then for each 2z € Q;(Z(G)), G/(z) is modular. Let 2z €
01(Z(G)) so that G/{zp) is modular. Since G is nonmodular, there is a minimal
nonmodular subgroup K of G which is isomorphic to a group of Lemma 1.3.
Obviously, K is a Wilkens group of type (b) and so K # G. Since G/{z) is
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modular, we have zg € K. If K 2 Dg, then (z9) = ,(Z(G)) = K'. Suppose
that K has a normal elementary abelian subgroup E = (n, z,t) of order 8 such
that K = (E,z), o(z) = 2°¥1,s > 1, EN(z) = (n), t* = tz, 2% = 2nf,e = 0,1,
0 (K) = E, and in case ¢ = 1 we have s > 1 and Z(K) = (z*). If e = 1,
then we must have zg = n. But then K/(zo) is nonmodular since K/(z?) = Dg.
Hence we have ¢ = 0, in which case K is minimal nonabelian nonmetacyclic
with Z(K) = (z2,2) = ®(K) and K’ = (z). Since K/(2) is modular (and
K/(n) is nonmodular), we have either 2o = z (and then K/(z) is abelian) or
zg = zn (in which case s > 1 and K/(zn) & My.+2).

Let H be a maximal subgroup of G containing K. Since H is nonmodular and
H # G, H is a Wilkens group. Since H/(zp) is modular, we may use Proposition
1.11. If H/(zp) is nonabelian, then there is another involution 2z in Z(H) such
that (2§) is a characteristic subgroup in H and H/{(z}) is nonmodular. But
then 2} € Z(G) and G/(z{) is nonmodular, contrary to our assumption. Hence
H/(zy) must be abelian and so K/(zp) is also abelian. In particular, zg = z,
where (z) = K'. In any case Q1(Z(G)) = (z) is of order 2. By Proposition
1.11(a), we have H = D x Ey, where exp(Ep) < 2 and

D= (y,t|y2m =t!=1,m> Lyt =22°=[2,94] = [2,t] = 1).

If m =1, then D = Dg, and if m > 1, then D is minimal nonabelian nonmeta-
cyclic with Eg = Q;(D) £ Z(D) and z = 29, where (z) = D' = H' = 01 (Z(G)).

Suppose m = 1. Then Z(H) = (z) x Ey is elementary abelian. If |Ey| > 4,
then acting with an element z € G — H on Z(H), we see that |Cyz ) (z)| > 4
and Czg)(z) < Z(G), contrary to the fact that 4(Z(G)) is of order 2. Hence
|Eo| < 2. If D= H = Dg, then Cg(D) < D would imply that G is of maximal
class and then G/(z) = Dg, a contradiction. If D = H = Dg and Cg(D) £ D,
then Lemma 1.1 implies that G = Dg x Ca, contrary to [Q1(Z(G))| = 2. Hence
we must have H = D x (t), where t is an involution with Cg(t) = H. Since
H/(z) is elementary abelian, exp(G/(z)) < 4 and therefore G/(z) is abelian since
G/(z) is modular (and Qs-free) of exponent < 4. In particular, D is normal in G.
We have Cy (D) = (2,t). If Cq(D) > (z,t), then Cg(t) = G, a contradiction.
Hence Cg(D) = (z,t) and Aut(Dg) = Dg implies that G/(z,t) = Dg. This
contradicts our assumption that G/(z) is modular.

Suppose m > 1. Here Z(D) = ®(D) = (y%,2) is abelian of type (2™ 1,2)
and Z(H) = (y? z) x Ey so that U1(Z(H)) = (y*). If m > 2, then Q;((y*))
is of order 2 and Q4 ((y*)) < Z(G), contrary to the fact that Q(Z(G)) = ().
Thus we have m = 2, {D| = 2%, and Z(H) = (y?,2) x Ej is elementary abelian.
Suppose that Ey # {1}. Then acting with an element z € G — H on Z(H), we
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get |Czm)(z)| > 4 and Czm)(z) < Z(G), a contradiction. It follows D = H
and so |G| = 25.

If z € G—H is of order 8, then z* € Z(H)—(z) (with (z) = H') since ®(H) =
Z(H) and z is not a square in H. But then Z(H) < Z(G), a contradiction.
Hence exp(G) = 4 and the fact that G/(z) is modular gives that G/{z) is abelian.
It follows that G’ = H' = (z). Since H = D = (y,t) and |G : Ce(y)| =
|G : Ca(t)| = 2, we get |G : Cq(H)| £ 4. But |H : Cy(H)| = |H : Z(H)| =
4 and so Cg(H) must cover G/H. But then Ey = Z(H) < Z(G), a final
contradiction.

(ii) The factor group G/(z) (z € 01(Z(G))) is not isomorphic to a
Wilkens group of type (a).

Suppose false. Then G/(z) has a maximal normal abelian subgroup N/(z) of
exponent > 2 such that G/N is cyclic of order > 2 and, if L/N = Q;(G/N),
then for each element x € L— N, 2% € (z), and z inverts each element of N/(z).

If all elements in L — N are involutions, then each y € L — N inverts each
element in N, which implies that N is abelian of exponent > 2, N is a maximal
normal abelian subgroup of G and, if G = (N, g), then G is a semidirect product
of N and (g) and the involution in (g) acts invertingly on N. Thus, G is a
Wilkens group of type (a), a contradiction. Hence, there is v € L — N with
v? = 2.

Let n be an element of order 8 in N. Then n¥ = n™12¢ (¢ = 0,1), and
therefore (n?)? = (n='2¢)2 = n~2%, contrary to Lemma 1.1. We have proved
that

exp(N) = exp(N/(z)) = 4.

Suppose that N is abelian. Let s and ! be elements of order 4 in N such that
(s)N{l) = {1}. In that case o(sl) = 4 and, using Lemma 1.1, we get s* = s7 'z,
¥ = 171z and consequently (sl)* = s~1zl71z = (sl)™!, a contradiction. Hence
N is abelian of type (4,2,...,2) and, since exp(N/(z)) = 4, z & U1(N). We
set U3(N) = (t) with t # z and so |N : Q;(N)| = 2, where each element in
N — Q(N) is of order 4 and has square equal to t. Also, (t) = U1(NV) is central
in G. Let a € N—Q;(N) so that a® = t and (by Lemma 1.1) a” = a™ 'z = a(zt).
By Lemma 1.2, (v,a) is minimal nonabelian nonmetacyclic of order 2* with
[v,a] = 2t and va is an involution. Suppose that v does not commute with
an involution u € Q;(N). Then u” = uz, o(au) = 4, and (au)? = a~lzuz =
(au)™!, contrary to Lemma 1.1. It follows that Cn(v) = Q1 (N), [(v), N] = (tz),
L' = (tz), W (N) = Z(L), ®(L) = (z,t), where (t) = U;(N). We have

L-N-= ’UQ](N) U (va)Ql(N),
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where all elements in v{}(N) are of order 4 and their squares are equal z and
all elements in (va){);(N) are involutions. Thus E = (va)23(N) = Qy(L) is
elementary abelian of index 2 in L and also E = ;(G) (since G/N is cyclic)
is the unique maximal normal elementary abelian subgroup of G. Now, L/E
is a normal subgroup of order 2 in G/E with cyclic factor group G/L. Thus
G/E is abelian. If G/E were cyclic, then the fact that G is not Dg-free gives
that G is a Wilkens group of type (b), a contradiction. Thus G/E is abelian
of type (2°,2),s > 1. If s > 1, then we set K/E = Q,(G/E) & E4. Since
K > L, K is not Dg-free and so K < G implies that K must be a Wilkens
group. But E = Q;(K) and K/E is noncyclic, a contradiction (see Propositions
1.8 to 1.10). Hence s = 1, G/E = E4, and so exp(G) = 4. We have G/N = C,
and so for each z € G — L, 2> € L — N and so 22 € E — N. Since the square of
each element in G is contained in (z) or (t) or in E — N, it follows that ¢z is not
a square in G. Hence ;(G/(tz)) = E/(tz). If G/(tz) were nonmodular, then
G/(tz) must be a Wilkens group and then (G/(tz))/(E/(tz)) = G/E must be
cyclic, a contradiction. It follows that G/(t2) is modular and, since exp(G) = 4,
G/(tz) is abelian and so G’ = (tz). Let z € G — L so that 2> = E — N. Then
[v,z] € (tz) and so [v,2%] = [v,z]2 = 1. But then v centralizes E and, since
L = (E,v), we get that L is abelian, a contradiction. We have proved that N
is nonabelian and so N/ = {(z}.

The subgroup N is nonmodular because a Qg-free modular 2-group of expo-
nent 4 is abelian. Let S be a minimal nonabelian subgroup of N. Then S’ = (z)
and S is normal in V. Since v acts invertingly on N/(z), v normalizes S and
so S is normal in L = (N,v). Since exp (S} = 4 and S is Qg-free, it follows
that either § & Dg or S is minimal nonabelian nonmetacyclic of order 24. If
S = Dg, then U1(S) = () and N’ = (z) implies that C(S) covers N/S. In that
case, Lemma 1.1 implies that Cn(S) is elementary abelian and so U1(N) = (z),
contrary to exp(N/(z)) > 2. It follows that we have the second possibility:

S = (a,tla4 =t?= 1,[a,t] = 2,22 = la,2] = [t,2] = 1).

We put b = at and compute b? = a?t?[t,a] = a?z, so that §' = (2), o(b) = 4,
(a)n(b) = {1}, and S = (a, b) with [a,b] = a?b? = z. Again, since N’ = S’ = (2),
we get that Cn(S) covers N/S and Cn(S) NS = Z(S) = &(S) = (z,a?).
Suppose that y € Cn(S) is of order 4. Since (a) N (b) = {1}, there is an
s € {a,b} so that (s) N (y) = {1} and o(sy) = 4. We compute

1

(s9)" = sty 2 =571y = (sy) 7,

contrary to Lemma 1.1. We have proved that Cn(S) is elementary abelian and
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N = SCn(S), SN Cn(S) = Z(S) and so the structure of N is completely

determined.

1 2

We act with (v) on S = {a, b) and get (using Lemma 1.1) a¥ = a™ 'z = a(a®z),
b? = b~z = ba?, which together with v = 2 determines uniquely the structure
of T = S{v).

Suppose that v does not centralize Cn (S} = Z(N). Then there is an involu-
tion s € Cn(S) — S such that s* = sz. Then o(as) = 4 and (as)’ = a~lzsz =
(as)™!, contrary to Lemma 1.1. Hence Cn(S) = Cn(T) and L = TCL(T) with
TNCL(T) = Z(T) = {z,a2).

We have Q,(S) = (z,a%,ab) = Fg, (z,a?) = Z(T),

2

(av)? = avav = av*v " lav = aza"lz =1,

and
(ab)®® = (abz)? = a™'zb7 22 = a7 b7 2 = aa?bb’z = aba®(a®2)z = ab.

Hence F = (z,a? ab,av) & FE, is an elementary abelian maximal subgroup
of T and so, from T’ > (z,a%) and |T| = 2% = 2|T"||Z(T)|, it follows that
T' = Z(T) = {(z,a®). Finally, T/(z,a?) is elementary abelian and therefore
Z(T) = T' = ®(T) & E,4, and so T is a special group of order 25. For each
z €T-F, Cp(z) = Z(T), and so the set Ty = T — F contains exactly
four square roots of z, four square roots of a2, four square roots of za?, and
so Tp must contain exactly four involutions in 7' — S. If ¢¢ is one of them,
then Cr(to) = Z(T) and F and (2,a?,ty) & Eg are the only maximal normal
elementary abelian subgroups of T (containing all involutions of T').

We have Cn(S) = Cn(T) = Z(L), and so if we set U = FZ(L), V =
(z,a%,t9)Z(L), then L =UV,UNV = Z(L), U and V are the only maximal
normal elementary abelian subgroup of L and they are of distinct orders, and
so U and V are normal in G and |U : Z(L)| =4, |V : Z(L)| =2, L' = ®(L) =
(z,a?). For each ty € V — Z(L), Cy(to) = Z(L), and so both U and V are
self-centralizing in L. Also, U is the unique abelian maximal subgroup of L
(otherwise, by a result of A. Mann, |[L’| < 2). Now, G/N is cyclic, L/N =
1(G/N), and so Q;(G) = L, which is a Wilkens group of type (b) with respect
to U. In particular, L < G.

If G/U is cyclic, then (since G is not Dg-free) G is a Wilkens group of type
(b), a contradiction. Hence G/U is noncyclic. But L/U < Z(G/U) and G/L is
cyclic (since L > N and G/N is cyclic) and so G/U is abelian of type (2", 2). Set
K/U =0 (G/U) 2 Ey. If G # K, then K is a Wilkens group with Q;(K) = L.
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By the structure of L, L does not have an abelian maximal subgroup of exponent
> 2 and so K is not a Wilkens group of type (a). Also, |K : ;(K)| =2 and
so K is not a Wilkens group of type (c¢). Hence K must be a Wilkens group of
type (b) with respect to U. But K/U = Ej, a contradiction. Hence G = K and
so G/U = E4 implies exp(G) = 4. Since 21(G) = L, all elements in G — L are
of order 4, and if z € G — L, then z? € U — N, where N = (Z(L),ab,a) and
UNN = Z(L) x (ab).

If Ca(V) > V, then Cr(V) = V implies that there is y € G — L with
y? € V, contrary to y? € U — N. We have proved that Cg(V) = V and so G/V
acts faithfully on V. We have G/V = (U(z})/Z(L), where U/Z(L) = E4 and
(®)Z(L)/Z(L) = Cq with z € G — L. Thus G/V = Dg or G/V = Cy x C,.
But L/V 2 U/Z(L) = E4 is a four-subgroup in G/V and, for each z € G — L,
z? € U — N so that (z) NV = {1}. Hence all elements in (G/V) — (L/V) are of
order 4 and so G/V =2 Cy x Cj.

If L' = (2,a®) = Z(L), then V = Eg. But G/V = C4 x C cannot act
faithfully on V' = Eg. We have proved that Z(L) > L' and so |Z(L)| > 8.

We act with (z) on Z(L), where x € G — L. Since z? € L, (z) induces
an automorphism of order < 2 on Z(L). Since |Z(L)| > 8, it follows that
|Czy(x)| > 4. Suppose that z centralizes an involution v € Z(L) — L' so
that u € Z(G). Since G/(u) is nonabelian and of exponent 4, G/{u) must be
nonmodular. Thus G/(u) is a Wilkens group with Q;(G/(u)) = L/(u) because
Q1(G) = L and u is not a square in G. Then U/(u) and V/(u) are the only
maximal normal elementary abelian subgroups of G/(u) and both G/U and
G/V are noncyclic and so G/{u) cannot be a Wilkens group of type (b). Also,
G/(u) cannot be of type (c) since 1(G/(u)) = L/{u) and |G/L| = 2. If
G/(u) is a Wilkens group of type (a), then (by the first part of the proof of
(ii)) L must possess a nonabelian maximal subgroup Ny containing (u) such
that N§ = (u). This is a contradiction since u € Z(L) — L'. We have proved
that for each z € G — L, Cz(y(z) < L'. Since [{Cyz(r)(z)| > 4, we must have
Czw)(z) = L' = Z(G) = (z,d?).

Let z € G — L so that z2 € U — N. We have U = (z,a?,ab,av)Z(L) and so
(ab)”lc2 = ab. On the other hand, 22 € L — N and z? acts invertingly on N/(z).
Thus

2
a® =a"12¢, b = b1gm (e,n =0,1),

2

and so noting that b? = a%z we get

2 —_— — a— a—
ab = (ab)® =a 1267 2" = a7 7125 = aabb? 26N = abzltetT,
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which gives e+ 7 = 1(mod2) andsoe=1orn=1.

12 = a(a?z) and we apply Lemma 1.2 in the

Suppose ¢ = 1. Then o =a-
group G/{a%z) = G. We have (using the bar convention) o(Z) = o(a) = 4 and
[z2,a) = 1 = [z,a%]. If [z,a] = 1, then [z,a] € (a?z) (and (z,a) is of class
< 2 since (z,a)’ < (a?z)) and so [z2,a] = [z,a]? = 1, a contradiction. Thus
[Z,a] # 1 and so (by Lemma 1.2) o(Za) = 2. Hence (za)? € {a?z), contrary to
the fact that za € G — L and (za)? € U — N.

Suppose 7 = 1. Then b = bl = b(a?) and we apply Lemma 1.2 in the
group G/(a?) = G. We have o(Z) = o(b) = 4 and [z%,b] = 1 = [5,b%]. If
[Z,5] = 1, then [z,b] € (a?) (and (z,b) is of class < 2 since (z,b)’ < (a?)) and
so [z%,b] = [z,b]? = 1, a contradiction. Thus [Z,b] # 1 and so (by Lemma
1.2) o(xb) = 2. Hence (xb)? € {(a?), contrary to the fact that zb € G — L and
(xzb)2 € U — N. Our claim (ii) is proved.

(iii) The factor group G/(z) (z € 0;(Z(G))) is not isomorphic to a
Wilkens group of type (b).

Suppose false. Then G/{z) has a maximal normal elementary abelian sub-
group N/(z) so that G/N is cyclic and G/(z) is not Dg-free. If N is elementary
abelian, then G is a Wilkens group of type (b) with respect to N, a contradic-
tion. Hence N is not elementary abelian and so Uy (N) = (2) and G # N. Set
L/N = Q:(G/N).

(@) Suppose that N is abelian.

Then |N : Q;(N)] = 2 and, for each a € N — Q(N), a®> = 2. Also,
(N —Q(N)) = N, W(G) < L, and 0(G/(z)) < L/{z). Let v e L— N
with v2 = z and let z be any element in N — Q;(N). By Lemma 1.2, [v,z] =1
and so v centralizes N. But then L is abelian with U;1(L) = (z) and L is normal
in G, contrary to our assumption that N/(z) is a maximal normal elementary
abelian subgroup of G/(z). We have proved that for each v € L — N, v? # z.

Suppose that for each z € L — N, 22 € N — Q;(N). If G = (N, g), then {g)
covers G/ (N). But then G/Q;(N) is cyclic and (since G is not Dg-free) G
is a Wilkens group of type (b), a contradiction. We have proved that there is
z € L — N with 2% € Q;(N).

Suppose that there are no involutions in L — N. There is £ € L — N such that
z? € Q1 (N) — (2). Suppose that z does not commute with an a € N — Q;(N).
By Lemma 1.2, za is an involution, a contradiction. Hence z commutes with all
elements in N —Q(N) and therefore L is abelian of type (4,4, 2,...,2). We have
(L) = Y (N) = 4 (G) and L/ (L) = E4. Since G is nonabelian, we have
L < G. Because N/ (N) is a normal subgroup of order 2 in G/Q4(N) and G/N



Vol. 154, 2006 FINITE QUATERNION-FREE 2-GROUPS 173

is cyclic, G/ (N) is abelian of type (2%,2),s > 2. Foreach y € L— N, y? = 22
or y? = z%2. Hence, if g € G is such that G = (N, g), then Q;((g)) = (x2) or
Q1({g)) = (z%2) and so U1 (L) = (z,2%) < Z(G). We may assume (by a suitable
notation) that (g) > (z). Set M = (g)Q;1(N) so that M is a maximal subgroup
of G. Suppose that G/(z?) is nonmodular so that G/(z?) is a Wilkens group.
But Q;(G/(z*)) = So/(z?), where Sg = Q;(N){z). On the other hand, G/S,
is noncyclic (since L/Sy and M/Sy are two nontrivial cyclic subgroups of G/Sp
with (L/So)N(M/Sg) = {1}). This is a contradiction and so G/{z?) is modular.
Since ©1(G/(z)) = N/(z), we may use Lemma 1.12 and we see that G/(2?,2)
is nonmodular. This is not possible since G/{z?) is modular. We have proved
that there are involutions in L — N.

Let ¢ be an involution in L — N. If t centralizes an element a € N — Qy(N),
then ta € L — N and (ta)? = 2, a contradiction. Thus, Cx(t) < Q(N). For
any z € L— N, Cny(z) = Cn(t) and so 2% € Q;(N). It follows that exp(L) = 4.

Suppose that ¢ does not centralize €2;(N). Let w be a fixed involution in
Q1 (N) — Cn(t) and let a be a fixed element in N — £ (N). We have w = wu
with 1 # u € Cy(t) and

(tw)? = (twt)w = wuw = u,

and so u € Cn(t) — (z) (since tw € L — N). Since Cn(tw) = Cn(t) < Q1 (N),
we have [tw,a] # 1. By Lemma 1.2, (tw)a is an involution. We get

1 = (twa)? = twatwa = w'atwa = wualwa = uaal,

and so ' = a™'u = aa?u = a(uz). We consider the factor group L/(uz) = L
and we see that o(a) = 4, o(f) = 2, [a,] = 1, @* = 3. Also, w' = wu = wz(uz)
gives @' = @z so that (@,f) = Dg with Z((@,f)) = (z). Hence (w,£)(a) is
the central product Ds * Cy, contrary to Lemma 1.1 (applied in L). We have
proved that ¢ centralizes 1{N) so that S = {#) x Q;(N) is an elementary
abelian maximal subgroup of L. Since L is nonabelian and exp(L) = 4, L is
nonmodular.

Let a € N — Q;(N). Then by Lemma 1.13, a* = a™!s, s € Q;(N). If s = 1,
then ¢ acts invertingly on N, G/N is cyclic and so G would be a Wilkens group
of type (a), a contradiction. Thus, s # 1 and (ta)? = (tat)a = a™'sa = s and
s0 s € 1(N) — (2). Set ta = y so that y? = s and, since Cy(y) = Cn(t), we
have for each n € Cn(t) = Q1(N), (ny)? = n?y? = s and [t,N] = (2s) = L.
The group L has exactly three abelian maximal subgroups: S = Q;(G), N, and
Q1 (N)(y), where only S is elementary abelian and all three are normal in G
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with O1(Q1(N)(y)) = (s), s € Q1 (N) — (2). We have Q1(N) = Z(L) and z,s
and zs are central involutions in G.

If G = L, then G would be a Wilkens group of type (b), a contradiction.
Thus L < G. Since G/N is cyclic of order 2,5 > 2, we have G = (N, g) with
¢ €L—N.Ifg” € L-N -8, then (g) covers G/S, G/S is cyclic and
so G would be a Wilkens group of type (b) with respect to S, a contradiction.
It follows that g2 € S — Q;(N). If L is not maximal in G, then there is
a subgroup K > L with |K : L| = 2 and so K is a Wilkens group. Since
8§ =Qi(K) and K/S = E4, we have a contradiction. Indeed, (8(923_2))/3 and
L/S are two distinct subgroups of order 2 in K/S. Hence |G : L| = 2 and for
eachge G—L, g%2¢S— 0 (N).

We apply now Lemma 1.2 in the group G/(zs) = G, where (zs) = L'. We
have for some elements g € G — L and a € N — Q,(N), 0(g) = o(a) = 4 and,
since a¥” = a(zs), we get [3,5%) = 1 = [a2,3]. If [5,a] = 1, then [g,a] € (zs) and
so [92,a] = [g,a)? = 1, a contradiction. Hence [§,a] # 1 and so (by Lemma 1.2)
o(ga) = 2 which gives (ga)? € (zs), contrary to ga € G — L and (by the above)
(ga)? € S — Q1 (N). We have proved that N must be nonabelian.

(8) Suppose that N is nonabelian.

This case is very difficult. We have U;(N) = N’ = (z). Let D be a minimal
nonabelian subgroup of N so that D' = (z). Since d(D) = 2 and D/(z) is
elementary abelian, we have D/(z) = E, and therefore D = Dg. The subgroup
D is normal in N and, since D' = N’, Cn(D) covers N/D. By Lemma 1.1,
Cn(D) is elementary abelian. We have Cn(D) = Z(N), N = DZ(N) with
DN Z(N)=Z(D) = {z) so that Z(N) is normal in G. Set

D = (a,ula* =u® =1,a® = z,a* = a7!)

so that A = (a,Z(N)), E1 = (u,Z(N)), and E3 = (au, Z(N)) are all abelian
maximal subgroups of N, where A is of exponent 4 (all elements in A — Z(N)
are of order 4, U;(A) = (2)), and E; and E; are both elementary abelian. Thus
A is normal in G. All elements in N — A are involutions, Z(N) = Q;(4), N is
a Wilkens group of type (a) with respect to A and also a Wilkens group of type
(b) with respect to F; and Es.

Since N/A is a normal subgroup of order 2 in G/A and G/N is cyclic, it follows
that G/A is abelian. If G/A were cyclic, then we have G = (A, g) with some
g € G and, since 9;({g)) is of order 2 and acts invertingly on A (of exponent
> 2), G is a Wilkens group of type (a), a contradiction. It follows that G/A is
abelian of type (2™,2),m > 1 and L/A = E4, where L/N = ;(G/N). Also
note that N/Z(N) = E4.
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Suppose that for each [ € L — N, [2 € A — Z(N). This is equivalent to
assuming that L/Z(N) 22 C4 x Cy, which also implies that both E; and E; are
normal in L. If G = (N, g), then either E{ = E, (in which case G > L and
G/Z(N) 2 Man,n > 4 and G is a Wilkens group of type (c)) or EY = Ey, E; is
normal in G, (g) covers G/E; and, since G is not Dg-free, G is a Wilkens group
of type (b). In both cases we have a contradiction.

We have proved that L/Z(N) is not isomorphic to Cy x C3 and so L/Z(N)
is either elementary abelian or L/Z(N) = Dg. In any case, thereisl € L - N
with 2 € Z(N).

(81) Suppose that L/Z(N) = Ds.

Then EY = E, for x € L — N, and so G = L. Indeed, the cyclic group G/N
acts on the set {E1, E} and so, if G > L, then L would normalize F;.

Suppose in addition that there are no involutions in L — N. Let le L— N
with 1?2 € Z(N) so that {2 # 1 and o(l) = 4. Let ap be any element in A — Z(N)
so that a2 = 2. If [I,ap] # 1, then lag is an involution in L — N, a contradiction.
Thus [ centralizes each element in A — Z(N) and, since (A — Z(N)) = A,
A(l) is an abelian maximal subgroup of G = L. Also, Z(N) = Z(G) (since
Z(L/Z(N)) = A/Z(N)) and so we may use the relation |G| = 2|G'||Z(G)|,
which gives |G| = 4. But G’ covers A/Z(N) = (G/Z(N))" and so G’ = Cy is
a cyclic subgroup of order 4 in A inverted by u (since u acts invertingly on A)
and so we have G'{(u) & Dg. We may assume G’ = {a@) < D = Dg so that D is
normal in G. By Lemma 1.1, C¢(D) is elementary abelian and so Cg(D) cannot
cover G /N (since there are no involutions in G — N). Hence C¢(D) = Z(N) and
L_ -1

so | € G — N induces an outer automorphism on D. Hence a , contrary

to Lemma 1.1.

We have proved that there are involutions in G — N and let ¢ be one of
them so that Q,(G) = G. Since G/Z(N) & Dg, there is k € G — N such that
k* € A— Z(N). Our ultimate goal is to show that Z(N) = Z(G).

Suppose Z(N) # Z(G). Assume there is s € G — N with s2 = 2 and let
ap € A—Z(N). If [s,a0] # 1, then (Lemma 1.2) [s,a9] = s%a2 = 2z = 1,
a contradiction. Thus s centralizes A — Z(N) and (A — Z(N)) = A and so
Z(N) < Z(G). Since Z(G/Z(N)) = A/Z(N), we have Z(N) = Z(G). This is
a contradiction and so there is no s € G — N with s = 2. In particular, the
involution ¢ does not centralize any element in A — Z(N).

Now, A(t) is a maximal subgroup of G. If z is any element of order 8 in
At, then o(z?) = 4 and z2 € A — Z(N). But then t centralizes 2 (noting
that C4(t) = Ca(z)), a contradiction. Hence exp(A(t)) = 4 and, since A(t) is
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nonabelian, A(t) is nonmodular and therefore A(t) must be a Wilkens group. If
X is an abelian maximal subgroup of A(¢) distinct from A, then XN A < Z(N)
(recalling that ¢ does not commute with any element in A — Z(N)) and, since
[A: (X NA)| =2, weget X > Z(N) and so Z(N) = Z(G), a contradiction.
Hence A is the unique abelian maximal subgroup of A(t).

If all elements in (A(t)) — A are involutions, then ¢ inverts each element of A
and so t centralizes Z(N) and then Z(N) = Z(G), a contradiction. It follows
that there is an element c of order 4 in At such that ¢ € Z(N) — (z). But
[e,a] # 1 (since t does not centralize a) and so (by Lemma 1.2) ac is an involution
for each a € A — Z(N). Since t does not centralize Z(N) (otherwise Z(N) =
Z(@G)), Z(N)(t) contains less than 2|Z(N)| -1 involutions. All |Z(N)| elements
ca (a € A — Z(N)) are involutions and so A(t) contains at least 2|Z(N)| — 1
involutions. This shows that Q1(A(t)) = A(t). Since A (of exponent > 2) is
the unique abelian maximal subgroup of A(t), A(t) must be a Wilkens group
of type (a). In that case t acts invertingly on A and so t centralizes Z(N) and
Z(N) = Z(G), a contradiction.

We have proved that Z(N) = Z(G) and so Z(N){k) = A(k) is an abelain
maximal subgroup of G (noting that k* € A — Z(N) and so Z(N)(k})/Z(N) is
cyclic). Using the relation |G| = 2|G'||Z(G)| we get |G’| = 4 and so G’ = C4
(since G’ covers A/Z(N)). We may assume (as before) that G’ < D and so D
is normal in G with Cg{D) = Z(N) (since Cg(D) is elementary abelian and
|G : Z(G)| = 8). The involution t induces an outer automorphism on D and
80 D{(t)} = Dqs. It follows that G = (D(t)) x Eam for some m > 1, which is a
Wilkens group of type (a), a contradiction.

(82) We have proved that we must have L/Z(N) = Eg and so exp(L) = 4.

In that case we prove first that there are involutions in L — N. Suppose false.
If v is any element in L— N and ap € A—Z(N), then 1 # v?> € Z(N) and a2 = 2
so that we may apply Lemma 1.2. If [v,aq] # 1, then vap is an involution, a
contradiction. Hence L = (L — N) centralizes A = (A — Z(N)). In particular,
A < Z(N), which contradicts the fact that Z(N) < A. We have proved that
there are involutions in L — N and so L = Q4(L) = Q:(G) (noting that G/N is
cyclic and L/N = Q:(G/N)).

Assume Cg(D) > Z(N) so that Cq(D) covers L/N and (Lemma 1.1) Cq(D)
is elementary abelian. In that case, L & Dg X Egm and U;(L) = (z), which
contradicts our assumption that N/{z) is a maximal normal elementary abelian
subgroup of G/{z). Hence Cg(D) = Z(N). If D were normal in L, then
L/Z(N) 2 Dg since Aut(D) = Dg. This is a contradiction and so Ng(D) = N.
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In particular, Z(L) < Z(N) and Z(N) > (z).
(B2a) We assume that G > L.

Hence L = Qy(L) (being nonmodular) is a Wilkens group of type (a) or
(b). In particular, L possesses an abelian maximal subgroup B. Since BN N
is an abelian maximal subgroup of N, we get BN N € {A, F1,E;}. Hence
BNN > Z(N) and so Z(N) < Z(L). By the result in the previous paragraph,
we get Z(N) = Z(L). Since |L : Z(L)| = 8, B is the unique abelian maximal
subgroup of L and so B is normal in G. Using the relation |L| = 2|L'|Z(L)|,
we get |L'| = 4. Since L' < Z(L), L' @ E4 and L' > {2).

It is easy to see that |G : L| = 2. Suppose false. Let K < G be such that
|K : L| = 2. Since L = Q;(K), K must be a Wilkens group of type (a) or (b).
By the uniqueness of B in L, it follows that K/B is a cyclic group (of order 4).
Since N < L and G/N is cyclic, G/L is cyclic. But L/B is a normal subgroup
of order 2 in G/B and so G/B is abelian. We have L/B < Q;(G/B). On the
other hand, G/L is cyclic and K/L = ,(G/L) so that Q1(G/B) < K/B. Since
K/B = Cy4, we get 1(G/B) < L/B and so 9;(G/B) = L/B. Hence G/B is
cyclic. If L is of type (a) (in the case exp(B) > 2), then all elements in L — B
are involutions and so G is also a Wilkens group of type (a), a contradiction. If
L is of type (b), then B must be elementary abelian and (since G is not Dg-free)
G is also a Wilkens group of type (b), a contradiction. We have proved that
|G : L} = 2 and G/B = E4 (because in case G/B = C4, G would be a Wilkens
group of type (a) or (b)). But G/N = C, and so for each z € G—L, z?> € B—N.

We assume first that exp(B) > 2. Then L is a Wilkens group of type (a). In
that case B/Z(N) & Ey, all elements in L — B are involutions and Q;(B) =
Z(N). Indeed, if |B : Q1(B)| = 2, then acting (invertingly) with an involution
in L — B on B, we see that |L'| = 2, a contradiction. Hence we must have
0 (B) = Z(N) so that B is abelian of type (4,4,2,...,2), BN N = A, u acts
invertingly on B, each element in B — N is of order 4, and if k € B — N, then
k* = zg € L' — (2) (noting that k* = k™! and so k* € L') and L'{a,k) =
(a,k) 22 Cy x Cy (if k? = z, then ak would be an involution in B — N, contrary
to Q1(B) = Z(N)). Let x € G — L so that 2 € B~ N and we may assume that
z? = k, where k% = 29 € L' — (z). In particular, Cg(2) > (L,z) = G and so
L' < Z(G). Let 2’ be an arbitrary element in G — L so that (z')2 =k € B~ N
and (k')? = 2/ € L' — (z). Consider the factor group G = G/(z'). We have
o(@) = o(z') = 4 and [a%,7/] = 1 = [a, (z')?] and so we may use Lemma 1.2. If
[@,2'] # 1, then o(az’) = 2 and so (az’)? € (z') < N, a contradiction. Hence we
must have [@,2'] = 1 and so [a,2'] € ((2)%). Tt follows that [a,z] = 2§ (¢ = 0,1).
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Consider the element y = zu € G — L and compute
[a,y] = [a,zy] = [a,u][a,z]" = 225 # 1.

On the other hand, [a,y] € (¥*), y* € L’ — (). Thus ¢ = 1 and y* = 2z.
Finally, consider the factor group G = G/(zz) so that o(§) = o(k) = 4 and
[§#,k?] = 1 = [§?, k] and apply again Lemma 1.2. Since [k, z] =1, we get

(k,y) = [k, zu] = [k, u][k, z]* = k? = 2,

and so [k,§] # 1. Thus o(kj) = 2 and so (ky)? € (z2) < N. This is a
contradiction since ky € G — L.

We study now the case exp(B) = 2 and L is a Wilkens group of type (b).
We may assume that BN N = E;. Since G/B = Ey, exp(G) = 4. Let ¢ be
an involution in B — N. Since B > E; = Z(N){u), t centralizes u € D. But
Np(D) = N and so [a,t] € L' — (). Suppose that L' < Z(G). Lesz € G- L
so that 22 € B — N and (by the above) [a,z?] = 29 € L' — (2). Consider
the factor group G/(z0) = G so that o(@) = o(z) = 4. If [Z,a] = 1, then
[z,a] € (20). But (z,a)’ = (2) and so (z,a) is of class 2. Thus [z%,a] =
[z,a]? = 1, a contradiction. Hence [Z%,a] # 1 and so (by Lemma 1.2) o(Za) = 2,
which gives (za)? € (2p), contrary to za € G — L and (za)? € B— N. We
have proved that L’ £ Z(G). Again, let z € G — L so that (z) induces an
involutory automorphism on Z{L) = Z(N). Suppose Z(N) > L'. Then there
is an involution 2’ € Z(L) — L’ centralized by = and so 2’ € Z(G). Since G/(2")
is nonmodular (noting that D N (z') = {1}), G/(¢') is a Wilkens group. All
squares of elements of G lie either in B —~ N or in L'. Indeed, let as(s € B) be
any element in L — B. Then (as)? = a?(a"!sas) = z[a,s] € L'. Therefore 2’
is not a square of any element in G, which implies L/(z') = Q:{G/(2’})). Let
y € L be such that [y, L] < (2’). But (2’) N L’ = {1} and so [y, L] = {1} and
therefore y € Z(L). Hence Z(L/(2')) = Z(L)/{2'). Since |L : Z(L)| = 8, the
elementary abelian group B/(z') is the unique abelian maximal subgroup of
L/(z"). It follows that G/(z') must be a Wilkens group of type (b) with respect
to B/{z'). But then G/B must be cyclic, a contradiction. We have proved that
L' = Z(L) and so |G| = 2. Now, A = {(a) x {20} = (a)L' = C4 x C3 is normal in
G and is self-centralizing in L (since B is the unique abelian maximal subgroup
of L). If Cg(A) £ L, then there is g € Cg(A) — L such that g2 € A < N,
contrary to g2 € B — N. Thus A is self-centralizing in G and so G/A = Dg
since Aut(A) = Dg. On the other hand, N/A is a normal subgroup of order 2 in
G/A and G/N = Cy so that G/A is abelian. This is a contradiction. We have
proved that the case G > L is not possible.
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(82b) It remains to study the case G = L = 1(G). Since G/Z(N) 2 Eg,
exp(G) = 4. If for each z € G — N, 22 € (z), then G/(z) is elementary abelian,
contrary to our assumption that N/(z) is a maximal normal elementary abelian
subgroup of G/(z). Hence there is k € G — N such that k? € Z(N) — (2). It
follows that k? € Z(G) and so (2) < Z(G) < Z(N).

Let 2/ € Z(G) — (2). Since G/(2') is nonmodular (noting that DN (') = {1}
with D 2 Dg), it follows that G/{z’) is a Wilkens group with ;(G/{2’)) =
G/(z'} and so G/(2’) cannot be of type (c). Hence G/(z') must be of type (b) by
our previous result (ii). Thus, G has a maximal subgroup N; containing 2’ such
that N1/(2’) is a maximal normal elementary abelian subgroup of G/(z'). By
our previous result (iii)(c), (z') = U;(IN1) = N{ (since N7 must be nonabelian).
In particular, 2’ is a square of an element in G — N and 2z’ is a commutator in
G. Conversely, if K € G — N, then k? € Z(G) so that ®(G) < Z(G). Hence
Z(Gy = G’ = ¢(G) and so G is a special group. Now, N N N; is a maximal
subgroup of N and, since Uy (N N Ny) < {2)N{(z') = {1}, NN N, is elementary
abelian and so N N N; = E; (or E;) containing Z(N) and (by the structure of
N1 = N) Z(Ny) is a subgroup of index 2 in NN N;. But Z(N)NZ(Ny) < Z(G)
and so |Z(N): Z(G)| < 2.

Suppose that [Z{N) : Z(G)| = 2 and let s be an involution in Z(N) — Z(G).
Let ¢ be an involution in G — N. We have [t, s] = sg with sg € Z(G) and sp # 1
since Z(N) # Z(G). If n € N, then

[tn,s] = [t, s][n, s] = [t, s] = sp € Z(G).

Hence, for each € G — N, [z, s] = so, where sp is a fixed involution in Z(G).
Take an involution 2’ € Z(G) — (z). Let Ny be a maximal subgroup of G such
that (') = U1(N;) = N{. Then N N N; is an elementary abelian maximal
subgroup of N containing Z(N). If fi € Ny — N, then [fi,s] = 2/ = sq. Let
N (# Np) be a maximal subgroup of G such that (zz') = U1(N2) = Nj. Then
again, N N Ny > Z(N) and, if fo € Ny — N, then [f2,s] = 22’ = s9. Hence
22/ = 2/ and so z = 1, a contradiction.

We have proved that Z(NV) = Z(G). Suppose that Z(G) possesses a four-
subgroup (21,22) such that (z1,22) N (z) = {1} (which is equivalent to the
assumption |Z(G)| > 8). Let ky, k2 € G — N be such that k% = z; and k2 = 2,.
Suppose that k; centralizes all elements (of order 4) in A — Z(N). Then k;
centralizes A = Z(N){a) = (A — Z(N)) and so A(k;) is an abelian maximal
subgroup of G. Using a result of A. Mann (Lemma 1.5 with respect to maximal
subgroups A(ki) and N), we get |G'| < 4. But G’ = Z(G) is of order > 8, a
contradiction. We may assume that [a,k;] # 1 and so (Lemma 1.2) [a,k;] =
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a’k? = zz;. We have either [a, k2] = 1 or [a, k2] # 1, in which case (Lemma 1.2)

[a, ka) = a?k2 = zz,. We compute
[a, k1k2] = [a, k1][a, k2] = 221[a, k2]

and so either [a, k1kp] = 223 or [a, ki1 ka] = 221225 = 2125. But the element k; k;
is contained in N and so [a, k1k3] € (2), a contradiction.

We have proved that we must have Z(N) = Z(G) = E4 and so |G| = 25. Let
2" € Z(G) — (z) and let ky,k2 € G — N be such that k¥ = 2’ and k2 = z2/.
Suppose [ky, ky] = 1 5o that (k1,ks) = Cy x Cy, k1ko € N and (k1ko)? = kZkZ =
z, and therefore we may assume that kiks = a. Hence (k;,k2) is an abelian
maximal subgroup of G normalized by u, where u inverts each element in

(kl,k2> NN = (a) X (z') >2CyxCy and G= (kl,k‘2><u>.

We know that there are involutions in G — N and so there is an element k €
(k1,ko) — N such that uk is an involution. This gives (uk)? = ukuk = 1,
k* = k! and so u inverts each element of the abelian group (ki,k2). In this
case G is a Wilkens group of type (a), a contradiction. Hence [k, kp] # 1
and, using Lemma 1.2, we get [ki,k2] = k?k3 = 2/(22') = z, o(k1ks) = 2,
kikz € N. Because kika &€ Z((k1, k2)), we may assume ki k2 = u (an involution
in N — A). Since [k1,u] = [k1,kika] = [k1,k2] = z (which gives u® = uz)
and D = (a,u) & Dg is not normal in G, we have [a,k;] # 1. By Lemma 1.2,
[a,k1] = a®k? = 22’ and kya is an involution in G — N. We compute

uk1e = (uz)?® = (uz)z = u.

Hence (u, kya) & E4 with (u,k1a) N Z(G) = {1} and so (u, kia,Z(G)) = Exs.
Since G is not Dg-free, it follows that G is a Wilkens group of type (b). This is
our final contradiction and so our statement (iii) is completely proved.

(iv) The factor group G/{(z) (z € 01(Z(G))) is not isomorphic to a
Wilkens group of type (c).

Suppose false. Then G/(z) is a Wilkens group of type (c). Hence we may set
0 (G/(2)) = H/(z) (implying that Q;(G) < H) so that H = HyHs, where H;
and H, are normal subgroups in H with Hy N Hy = (2), H1/(z) = Dg, Hy/(2)
is elementary abelian and G/H is cyclic of order > 4. Let Z/(z) be the unique
cyclic subgroup of index 2 in H;/(z) and set Z(H;/{z)) = Zp/{z) so that
|Z : Zo| =2 and |Zy : (2)| = 2. Let ZoH2 = N, ZH; = A, so that Z(H/(z)) =
N/(z) and N/(z) is the unique maximal normal elementary abelian subgroup of
G/{z), G/N = Myn,n > 4, A/N = (G/N)', H/IN = Q;(G/N) = E4. If E,/N



Vol. 154, 2006 FINITE QUATERNION-FREE 2-GROUPS 181

and Ey/N are another two subgroups of order 2 in H/N (distinct from A/N),
then E¢ = Ej, E;/{z) and E,/(z) are elementary abelian and A/(z) is abelian of
type (4,2,...,2). Also, Ng(E1) = Ng(E2) > H and |G : Ng(E1)| = 2. Finally,
G possesses a subgroup S such that G = HS, HN S = Z, and §/{(z) is cyclic
so that S is abelian. In fact, S is either cyclic or abelian of type (2%,2),n > 4.
Also, S is cyclic if and only if Zp is cyclic (since Zy/(z) = 2,(S/(z))). We have
H' < Zy and H’ covers Zy/(z).

() Suppose Zj (and so also S) is cyclic.

We have Hq/(z) = Dg and (H:/{z)) = Zy/(z). Since H| covers Zy/(z)
and Zg is cyclic, we get that H, = Zg is of index 4 in Hy. By a very well
known result of O. Taussky, H; is of maximal class. Since H; is Qg-free, we
get Hy 22 Dga. An involution ¢ € Hy — Z inverts Z and so Hy = (Zy,t) = Ds.
The subgroup Hj is normal in H; and [Hy, Hy] < H; N Hy = {z) implies that
Hj is normal in H. Since Cy, (H3) = (z) and H,/(z) & Dg = Aut(Hz), we
get that Cy (Hs) covers H/Hy. By Lemma 1.1, Cy(Hs) is elementary abelian.
In particular, Q(H) = H = Q;(G). Since H is nonmodular, H is a Wilkens
group with ©4(H) = H and so H is of type (a) or (b). It follows that H has
an abelian maximal subgroup A which is unique (by a result of A. Mann) since
H' > H{ and |H!| = 4 (see Lemma 1.5). In particular, A is normal in G. Also,
ANH, = Z = Cg since Z is the unique abelian maximal subgroup of Hy & Do4
and so exp(A) > 2. If t € H; — Z, then H must be a Wilkens group of type (a)
and the involution ¢ acts invertingly on A. Let N = Q3(A) = Zo (A) (since
A/Z is elementary abelian) so that N is normal in G, and N /{z) is a normal
elementary abelian subgroup of G/(z). By the uniqueness of N/(z), N < N
and so A= ZN < ZN = A and therefore A = A is abelian of type (8,2,...,2).
Let G; > H be such that |Gy : H| = 2. Hence Gy # G and G = HS;, where
S1 = 8NG,. It follows that G is also a Wilkens group with Q(G;) = H.
Since |Gy : H| < 4, Gy is of type (a) or (b). But A = A is the unique abelian
maximal subgroup of H and exp(A) > 2. Thus G must be a Wilkens group of
type (a) with respect to A and so G1/A = Cy4. On the other hand, we know that
S1NH = Z. Hence, if t € S; — H, then 22 € Z < A. This is a contradiction
since G1/A 2 C4 and therefore 2% € H — A.

(B) Suppose Zy = E4 and so S splits over (z).

We set Z = (a) x (2) so that Zy = (a?) x (2) and, replacing a with az (if
necessary), we may put S = (s) x (z) with Q3((s)) = (a) = SN H. If |H]| = 4,
then |Hy : H{| = 4, H{ = Z,, and (by a result of O. Taussky) H; is of maximal
class. In that case Zy would be cyclic, a contradiction.
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We have proved that |Hj| = 2 and so Zp = Hj x {2). We set Hj = (29) so
that zg is a central element in H. But S is abelian, G = HS, and SN H = Z
> Zo = (2,20). It follows Cg((2,20)) > (H,S) = G and so (z,20) < Z(G).

We show that there are exactly two possibilities for the structure of H;. Since
H,/Zy % E4, we have exp(H;) = 4. Suppose that H; is minimal nonabelian. If
H, is metacyclic (of exponent 4), then we know that Hj is not Qg-free. Thus
H; must be nonmetacyclic and we know that there is only one such minimal
nonabelian group of order 2* and exponent 4. In particular, there is an element
b € Hy—Z such that b? = 2, [a,b] = a?b? = a®z = 29, where H] = (20), zp is not
a square in Hy, and @b is an involution so that Q;(H;) = {2, z0,ab). Suppose
now that Hj is not minimal nonabelian. Then there is a subgroup D = Dg in
H, which covers H;/(z). Thus Hy = D x (z) and H] = D' = (). We have
DNZ = (a) or DNZ = (az) and all elements in H; — Z are involutions acting
invertingly on (a,2). Replacing a with az (if necessary), we may assume that
DN Z = {a). If t is an involution in D — Z, then D = (a,t), where zp = a® is a
square in Hj.

Suppose that Hy is nonabelian. Then Hj = (z) since Ha/(z) is elementary
abelian. Let H, be a minimal nonabelian subgroup of Hs so that Hy = (z),
H,/(z) is elementary abelian and d(H,) = 2. Thus Hy/(z) = E4 and so Hy &
Dg. The subgroup H, is normal in Hy and Hj centralizes Hy/(z). We have
[Hi, H4] < H1 N Hy = (2) and so H, also centralizes Hs/(2) and Hy is normal
in H. Thus, H centralizes Hy/(z) and therefore there is no h € H inducing
an outer automorphism on Hy (because otherwise such an element i would act
nontrivially on Hy/(2)). It follows that Cy(Hy4) covers H/Hy. But H/H, is
nonabelian since Hy < H; and H/H, 2 H; /(z) & Dg. This contradicts Lemma
1.1. We have proved that Hy; must be abelian and so Hy is either abelian of
type (4,2,...,2) or elementary abelian. In any case, N = ZyHs = (zp) x H,
since zg € Z(G).

(81) Suppose that H; is abelian of type (4,2,...,2), where U;(N) = U, (H2)
= (z). Set E = Q,(H>) so that Q;(N) = (z) x E and all elements in H, — E
are of order 4. Let h be an arbitrary element in Hy — E so that h? = 2.

We consider first the possibility that H; is minimal nonabelian nonmetacyclic.
Let z be any element of order 4 in H; so that 22 = z or 22 = 2z, where
(20) = H}. Suppose that [z,h] # 1. By Lemma 1.2, [z,h] = 2°h? = 2%z. On
the other hand, [z,h] < H; N Hy = (2) and so [z,h] = 2, which gives 2% = 1,
a contradiction. Hence [z, h] = 1 and, since H; is generated by its elements of
order 4 (noting that Q;(H;) = Eg) and Hy = (Hy — E), we get [Hy, Ho] = {1}.
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We apply Lemma 1.1 in the factor group H = H/{2zp). We have H; = Dg
and (Hi,h) = H; * (R) is the central product of H; with (h) = C,, where
H, N {h) = Z(H,), a contradiction.

We consider now the possibility where H; = D x (z) with

D ={(a,tla* =t*=1,a" =a™'), a®=2, and (2)=D".

If {a, h] # 1, then [a,h] € H; N Hy = (z) and so [a,h] = 2. On the other hand,
Lemma 1.2 implies [a, h] = a?h? = 22, a contradiction. Hence [a,h] = 1 and
so a centralizes Hy = (Hz — E). It follows that A = ZHs; = {(a) x H is an
abelian maximal subgroup of H with exp(A) = 4 and A is normal in G. We
have Qy(H;) = H; and so Qy(H) contains the maximal subgroup Hy E of H,
where E = Q(Hy) with |Hy : E| = 2. If [t,h] = 1, then D = {(a,t) = Dg
centralizes (h) = Cjy, contrary to Lemma 1.1. Hence [t,h] # 1 and, since
[t,h] € Hy N Hy = (2), we get [t,h] = z with z = h2. Thus, (t,h) = Dg and so
th is an involution in H — (H; E). We have proved that Q;(H) = H and, since
(G) < H, we get also Q1 (G) = H. Also, H' = (2, z9) & E4 and therefore, by
a result of A. Mann (Lemma 1.5), A is the unique abelian maximal subgroup of
H. Take a subgroup G; of G with H < G; < G and |Gy : H| = 2. It follows that
G must be a Wilkens group of type (a) with (G1) = H, since |Gy : H| = 2
and A is the unique abelian maximal subgroup of H (with exp(A) > 2). In that
case G1/A is cyclic. On the other hand, setting S; = SNGy, we have Gy = HS,
and S N H = Z. Thus, if g € S; — H, then g° € Z < A. This contradicts the
fact that G1/A 2 Cy.

(82) We have proved that Hy (and so also N = (z) x Hy) is elementary
abelian. Suppose first that H; is minimal nonabelian nonmetacyclic. In this
case zg is not a square in Hy, where (z9) = Hj. There is b € H; — Z with b* = 2,
t = ab is an involution, and a® = zz9. Now, A = ZN = (a)N is normal in G
and ((t)N)* = (b)N (recalling that S = (s) x (z)) since G/N = My~,n > 4, and
so G acts nontrivially on the four-group H/N. The subgroup Q(H) contains
the maximal subgroup ()N of H, where Q;(H) = (z,20,t) & Eg and NNHy =
(2, 20). If t centralizes Hy, then (t)N is elementary abelian. But ((t)N)* = (b)N
and (b)N is not elementary abelian, a contradiction. Hence ¢ does not centralize
Hj; and so [H,t] = (z) since [Haz,t] < Hy N Hy = (2). It follows that ()N is
nonabelian and so (b)N is also nonabelian. In particular, H' = (z,zp) = Ej,
[H2,b] = (z), and so (b) is normal in Ho(b). Let u be an involution in Hj
with [b,u] = 2 so that (b,u) = Ds and therefore bu is an involution. But
bu € H— ((t)N) and so Qy(H) = H. It follows that H must be a Wilkens
group of type (a) or (b). In that case H must possess an abelian maximal
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subgroup M which is also unique (by a result of A. Mann since |H'| = 4). We
have M > H' = (z,2). If M does not contain Hy, then M covers H/H; which
is nonabelian (since H/Hs & Hy/{z) & Dg), a contradiction. Hence M > H,
and so M > (H',H2) = N. Since (t)N and (b)N are nonabelian, we get that
M = A = (a)N is abelian (of exponent 4). Thus H is a Wilkens group of type
(a) with respect to A and so the involution ¢ must invert each element in A. In
particular, a® = a™! = aa? = a(z2p). This is a contradiction since H] = {zp).
It remains to investigate the case where H; = D x (z) with

D={(atla*=t*=1,a' =a™1), a®=2z, (20)=D, and

S={(s)x(z), (s)NH ={(a), ({t)N)®=(at)N, since G/N = Mz ,n > 4.

Obviously, in this case Q;(H) = H = 01(G). Suppose that ¢t does not centralize
H,. Then [t,H,) < Hi N Hy = (2) and so [t, Ha] = (z) and H' = (z,2) = E4.
Then ()N and (at)N = ((t)N)*® are nonabelian. But H is a Wilkens group
with ;(H) = H and so H must have an abelian maximal subgroup U which
is unique (by a result of A. Mann). If U does not contain Hy, U covers H/H>
and this is a contradiction, since H/Hy & Dg. Hence U > (H',Ha) = N and
so U = A = (a)N is abelian of exponent 4. Thus, H is a Wilkens group of type
(a) with respect to A. In particular, the involution ¢ inverts each element in A
and so t centralizes Ha, a contradiction. Hence t centralizes H, and so (t)N is
elementary abelian. In that case {at)N = ({t)N)® is also elementary abelian. In
particular, D = (¢, at) & Dg centralizes Hp and so H = D x H,. It follows that
G is a Wilkens group of type (c), a contradiction. Our statement (iv) is proved.

We have proved that the nonmodular factor group G/(z) (z € Q1 (Z(G))) (ac-
cording to our statement (i)) is not isomorphic to any Wilkens group (according
to (ii), (iii), and (iv)). This is a final contradiction and so the Main Theorem is
proved.
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